Answer:
4
Explanation:
A certain arithmetic sequence has this explicit formula for the nth term:
![a_n = 11 + (n- 1)(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/c74nauo7imso0h1jcuhehirknop75c2r5h.png)
Substitute n = 1
![a_1 = 11 + (1- 1)(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/qw68kymt1961pox8kjsc73pu3feijgwh1q.png)
![a_1 = 11](https://img.qammunity.org/2019/formulas/mathematics/high-school/3ond7a56u4s97waebapjedrziean7afeaj.png)
Substitute n =2
![a_2 = 11 + (2- 1)(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dz5yr6n0z6qjuyq1p7jgqyxpol0l73eei4.png)
![a_2 = 15](https://img.qammunity.org/2019/formulas/mathematics/high-school/ktp0pvsjycv27hwr3dzv3wxr3kzsh36kuu.png)
![d= a_2-a_1=15-11=4](https://img.qammunity.org/2019/formulas/mathematics/high-school/qy71mnxyoe8x0r5bnlb92naw6i5pqxh3r4.png)
So,
--1
Substitute n = 3
![a_3 = 11 + (3- 1)(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/xktwkdk104pf36b29n4wq1fj4nx5qzu6bl.png)
![a_3 = 19](https://img.qammunity.org/2019/formulas/mathematics/high-school/e74wafkkj6dolsijjko6hbdas2vdhqhoz7.png)
---2
So, with 1 and 2
Recursive formula :
![a_n=a_(n-1)+d](https://img.qammunity.org/2019/formulas/mathematics/high-school/jjks401ny48doh2hb3k0c94aiu6w8kdm28.png)
Since d is 4
So, the number belongs in the blank space in the recursive formula is 4.