23.9k views
0 votes
If the local linear approximation of f(x) = 2cos x + e^2x at x = 2 is used to find the approximation for f(2.1), then the % error of this approximation is?

1 Answer

1 vote

Answer-

The % error of this approximation is 1.64%

Solution-

Here,


\Rightarrow f(x) = 2\cos x + e^(2x)


\Rightarrow f'(x) = -2\sin x + 2e^(2x)

And,


\Rightarrow f(2) = 2\cos 2 + e^(4)


\Rightarrow f'(2) = -2\sin 2 + 2e^(4)

Taking (2, f(2)) as a point and slope as, f'(2), the function would be,


\Rightarrow y-y_1=m(x-x_1)


\Rightarrow y-(2\cos 2 + e^(4))=(-2\sin 2 + 2e^(4))(x-2)


\Rightarrow y=(-2\sin 2 + 2e^(4))(x-2)+(2\cos 2 + e^(4))

The value of f(2.1) will be


\Rightarrow y=(-2\sin 2 + 2e^(4))(2.1-2)+(2\cos 2 + e^(4))


\Rightarrow y=(-2\sin 2 + 2e^(4))(0.1)+(2\cos 2 + e^(4))


\Rightarrow y=64.5946

According to given function, f(2.1) will be,


\Rightarrow f(2.1) = 2\cos 2.1 + e^(2(2.1))


\Rightarrow f(2.1) = 65.6766


\therefore \%\ error=(65.6766-64.5946)/(65.6766)=0.0164=1.64\%

User David A Gibson
by
8.1k points