Answer:
![(-1)/(x(x+h)), h\\e 0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/yitzelasdt6pi87w6aq949pvc9cxdi1ko8.png)
Explanation:
If
, then
. It follows that
![\begin{aligned} \\(g(x+h)-g(x))/(h) &= (1)/(h) \cdot [g(x+h) - g(x)] \\&= (1)/(h) \left( (1)/(x+h) - (1)/(x) \right)\end{aligned}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wp7yzrgebt1q6jligb0l7j5xsn6gga1l7n.png)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.
![\begin{aligned} \\(g(x+h)-g(x))/(h) &= (1)/(h) \left( (1)/(x+h) - (1)/(x) \right)\\&=(1)/(h) \left((x)/(x(x+h)) - (x+h)/(x(x+h)) \right) \\ &=(1)/(h) \left((x-(x+h))/(x(x+h))\right) \\ &=(1)/(h) \left((x-x-h)/(x(x+h))\right) \\ &=(1)/(h) \left((-h)/(x(x+h))\right) \end{aligned}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/azencuz63cot9uddxqjocl7h0dv6iegbj1.png)
Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.
![= (-1)/(x(x+h)), h\\e 0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4mu5bwq9wbynzeyxkzqd6qpska7owj1zfm.png)