Steps:
So for this, we will be completing the square to solve for m. Firstly, subtract 8 on both sides:

Next, divide both sides by 2:

Next, we want to make the left side of the equation a perfect square. To find the constant of this perfect square, divide the m coefficient by 2, then square the quotient. In this case:
-8 ÷ 2 = -4, (-4)² = 16
Add 16 to both sides of the equation:

Next, factor the left side:

Next, square root both sides of the equation:

Next, add 4 to both sides of the equation:

Now, while this is your answer, you can further simplify the radical using the product rule of radicals:
- Product rule of radicals: √ab = √a × √b
√12 = √4 × √3 = 2√3.

Answer:
In exact form, your answer is

In approximate form, your answers are (rounded to the hundreths)
