Answer:
The equation of perpendicular bisector is:
![y = 2x-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/bhw9slcj3trt9ygyzu9a2uljq9zm5hhrgb.png)
Explanation:
Given the points
First, we need to find the midpoint of the points (-4, 3) and (8, -3)
![\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left((x_2+x_1)/(2),\:\:(y_2+y_1)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/arkat8hy5vnzryka9t7d95c2y05qflma7j.png)
![\left(x_1,\:y_1\right)=\left(-4,\:3\right),\:\left(x_2,\:y_2\right)=\left(8,\:-3\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1qno7fwsi2madd2qmxgua7xgo569bq4dp4.png)
![=\left((8-4)/(2),\:(-3+3)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g9148aygiphv56gwrroyasn7jlqh2l6l07.png)
![=\left(2,\:0\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/la1nas1pcfo36oz418vwaw6xzgbxsiofy4.png)
Thus, the midpoint of the points is: (2, 0)
Now, finding the slope between (-4, 3) and (8, -3)
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/noa3dwrz4s6a4umc1ibrxg0crgl23zrf2o.png)
![\left(x_1,\:y_1\right)=\left(-4,\:3\right),\:\left(x_2,\:y_2\right)=\left(8,\:-3\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1qno7fwsi2madd2qmxgua7xgo569bq4dp4.png)
![m=-(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/thcw1muv0xls87xoi17n0f8v6kwww4kxrq.png)
Therefore, the slope m = -1/2
The slope of the line perpendicular to the segment = [-1] / [-1/2] = 2
Using the point-slope form of the equation of the line, the equation of perpendicular bisector is:
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
where m is the slope of the line
substituting the slope 2 and the point (2, 0)
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
![y - 0 = 2 (x-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eystez4tum8il3ke6h9zqdk6ug0pfsou57.png)
![y = 2x-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/bhw9slcj3trt9ygyzu9a2uljq9zm5hhrgb.png)
Therefore, the equation of perpendicular bisector is:
![y = 2x-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/bhw9slcj3trt9ygyzu9a2uljq9zm5hhrgb.png)