Answer:
(3 - 4cos(2x) + cos(4x))/8
Explanation:
You know that ...
... cos(2x) = cos(x)^2 - sin(x)^2 = 1 - 2sin(x)^2
Then
... sin(x)^2 = (1 -cos(2x))/2
Squaring this, we get ...
... sin(x)^4 = (1/4)(1 - 2cos(2x) +cos(2x)^2)
... = (1/4)(1 - 2cos(2x) +(1 -sin(2x)^2))
Using the above relation for sin^2, we have ...
... sin(x)^4 = (1/4)(2 - 2cos(2x) - (1-cos(4x))/2)
... = (1/8)(3 - 4cos(2x) + cos(4x))