6.5k views
15 votes
Calculate the average rate of change of function on the interval (a,a+h). simplify your expression.Show all steps.

f(x)=3x+2/2x-1

Calculate the average rate of change of function on the interval (a,a+h). simplify-example-1

1 Answer

11 votes

Answer:

Please check the explanation.

Explanation:

Given the function


f\left(x\right)=(3x+2)/(2x-1)

at x₁ = a,


f\left(x_1\right)=f\left(a\right)=(3a+2)/(2a-1)

at x₂ = a+h,


f\left(x_2\right)=f\left(a+h\right)=(3\left(a+h\right)+2)/(2\left(a+h\right)-1)

Using the formula to determine the average rate of change

Average rate = [f(x₂) - f(x₁)] / [ x₂ - x₁]


=\:((3\left(a+h\right)+2)/(2\left(a+h\right)-1)-(3a+2)/(2a-1))/(a+h-a)\:\:\:\:\:\:\:

as a+h-a = h, so


=((3\left(h+a\right)+2)/(2\left(h+a\right)-1)-(3a+2)/(2a-1))/(h)

Thus, the everarge rate of chnage:
((3\left(h+a\right)+2)/(2\left(h+a\right)-1)-(3a+2)/(2a-1))/(h)

We can further simplify such as:


=((3\left(h+a\right)+2)/(2\left(h+a\right)-1)-(3a+2)/(2a-1))/(h)


=(-(7h)/(\left(2a-1\right)\left(2\left(h+a\right)-1\right)))/(h)


=-((7h)/(\left(2a-1\right)\left(2\left(h+a\right)-1\right)))/(h)


=-(7h)/(\left(2a-1\right)\left(2\left(h+a\right)-1\right)h)

Cancel the common factor h


=-(7)/(\left(2a-1\right)\left(2\left(h+a\right)-1\right))

User Jaylene
by
3.5k points