Answer:
Exponent laws:
1. Product law
![x^(a)* x^(b)* x^(c)=x^(a+b+c)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7u6lqodmodhqme9eymrv2grhybjpck9hye.png)
In product law if bases are same then we add their respective powers.But if bases are different we can't add their powers.
x=base, a,b,c=exponent
If x=2 and a=3, b=5 , and c=10, then
![2^(3)*2^(5)*2^(10)=2^(3+5+10)=2^(18)](https://img.qammunity.org/2019/formulas/mathematics/high-school/3s5xs1qoh7tic4s696wa18anz2ynvrmhlu.png)
2.Product raised to a power
1.
![[x^(a)]^(c)=x^(ac)](https://img.qammunity.org/2019/formulas/mathematics/high-school/kry832pg1yiq8mc8qgthv74bpsyeb0diig.png)
2.
![[x^(a)* x^(b)]^(c)=[x^(a+b)]^(c)=x^(ac+bc)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7ixv3mdrmvskoctjt27ejxaxb7p5d5ic2l.png)
If product is raised to a certain power , keeping the base same , we just multiply the powers.for example
and
![[2^(3)*3^(2)]^(2)=[2^(3)]^2 *[3^(2)]^(2)=2^(6)*3^(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4hizq0bfy3nrfofzucexbf88so12jkurtz.png)
![[2^(3)*2^(2)]^(2)=[2^(3+2)]^(2)=[2^(5)]^(2)=2^(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/3xc4spoev3s6z03lvclvsktjqkjruwozac.png)