Answer:
The value of x in terms of b is:
![\mathbf{x=-(6)/(2b)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mo1ieawv2y6mfdmd5jom2stnbq09dvoo85.png)
The value of x when b is 3 is: x = -1
Explanation:
We are given the function:
![-2(bx-5)=16](https://img.qammunity.org/2022/formulas/mathematics/high-school/aw29ugcw4lwdvyubxcbn5u9lgs1pb4aaq9.png)
First we need to find
The value of x in terms of b
We need to find value of x
![-2(bx-5)=16](https://img.qammunity.org/2022/formulas/mathematics/high-school/aw29ugcw4lwdvyubxcbn5u9lgs1pb4aaq9.png)
Multiply -2 with terms inside the bracket
![-2bx+10=16](https://img.qammunity.org/2022/formulas/mathematics/high-school/ah0xwp83vcx7e8ztbmwtdj054il5jkmkw7.png)
Subtract 10 from both sides
![-2bx+10-10=16-10\\-2bx=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/1nqj70xfdcndafh9bc1uai71vxdiejwwuq.png)
Divide both sides by -2b
![(-2bx)/(-2b)=(6)/(-2b)\\x=-(6)/(2b)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jlrs6gmbggaswmz6m5sm08uq0f6kh0b8r4.png)
So, The value of x in terms of b is:
![\mathbf{x=-(6)/(2b)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mo1ieawv2y6mfdmd5jom2stnbq09dvoo85.png)
The value of x when b is 3
We have the equation for the value of x in terms of b:
![\mathbf{x=-(6)/(2b)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mo1ieawv2y6mfdmd5jom2stnbq09dvoo85.png)
Put b = 3
![x=-(6)/(2(3))\\x=-(6)/(6)\\x=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/5t51xq0l6go1dgi6m38bklmr8bhuarj93m.png)
So, The value of x when b is 3 is: x = -1