59.5k views
4 votes
Derivative of x^3 + 5y^2=2

1 Answer

3 votes

Answer:


\displaystyle y' = (-3x^2)/(10y)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle x^3 + 5y^2 = 2

Step 2: Differentiate

  1. Implicit Differentiation [Derivative Property - Addition/Subtraction]:
    \displaystyle (d)/(dx)[x^3] + (d)/(dx)[5y^2] = (d)/(dx)[2]
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle (d)/(dx)[x^3] + 5 (d)/(dx)[y^2] = (d)/(dx)[2]
  3. Basic Power Rule [Derivative Rule - Chain Rule]:
    \displaystyle 3x^2 + 10yy' = 0
  4. Isolate y' term:
    \displaystyle 10yy' = -3x^2
  5. Isolate y':
    \displaystyle y' = (-3x^2)/(10y)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Andebauchery
by
9.0k points