Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/h3h81fknzks3m5lkzvmdwrmpof8mpsbacs.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ijuuby0owovgvvmkyt63pxr8cpkn8j9mgp.png)
Implicit Differentiation
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Implicit Differentiation [Derivative Property - Addition/Subtraction]:
![\displaystyle (d)/(dx)[x^3] + (d)/(dx)[5y^2] = (d)/(dx)[2]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8j07fy5jcr7rch7i30aqvzuawy1lv44knz.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle (d)/(dx)[x^3] + 5 (d)/(dx)[y^2] = (d)/(dx)[2]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/726cem11lxd9gf8rseohpm30dx57nvagfp.png)
- Basic Power Rule [Derivative Rule - Chain Rule]:

- Isolate y' term:

- Isolate y':

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation