We are given expression:
![(2x^4y^5)^(3/8)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/87guhemt9qli4ya2w90w17lgo2xkxlsxmg.png)
Let us distribute 3/8 over exponents in parenthesis, we get
![(2^(3/8)x^(4* 3/8)y^(5* 3/8)) = (2^(3/8)x^(12/8)y^(15/8))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/27eqflffwxhs62urvul1fdm6w0mkviefj0.png)
![= (2^(3/8)x^{1(4)/(8)} y^{1(7)/(8)} )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/j1jgaltb401kcgzvy0a3vl426zgej7aav0.png)
We can get x and y out of the radical because, we get whlole number 1 for x and y exponents for the mixed fractions.
So, we could write it as.
![(2^(3/8)x^{1(4)/(8)} y^{1(7)/(8)} ) = xy(2^{(3)/(8) }x^{(4)/(8)} y^{(7)/(8)} )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6u411cd133ejy3g1qsi3v96auijo4qm9s0.png)
Now, we could write inside expression of parenthesis in radical form.
![xy\sqrt[8]{2x^(3)x^4y^7}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9t4ilu9gi9lrs2ktonky274bhu0df9z86k.png)