Answer:
The perimeter is 72 units and the area is 149 square units.
Explanation:
has coordinates
and
![A(0,0)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pko6fwnypjhjo2qu2w43wyup05de3a7sra.png)
Using the distance formula.........
Length of side
![SB = √((15+2)^2+(-8-21)^2)= √(17^2+(-29)^2)= √(1130)](https://img.qammunity.org/2019/formulas/mathematics/high-school/229ymhglkinmmzq28ql25dwyjb6fw9jz69.png)
Length of side
![BA= √((-2)^2+(21)^2)= √(445)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k88ympn1rfrimk4nag2r5tlxdrsekkgdmj.png)
Length of side
![AS =√((15)^2+(-8)^2)=√(289)=17](https://img.qammunity.org/2019/formulas/mathematics/high-school/wikq0vnsvj80nlezwv198re644u8qqnxgm.png)
So, the perimeter of the triangle will be:
units. (Rounded to the nearest unit)
The height of the triangle for the corresponding base
is 8.89 units.
Formula for the Area of triangle,
![A= (1)/(2)(base* height)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bs9aqhx014q16x5hwdavea5qt51tgj390h.png)
So, the area of the
will be:
square units. (Rounded to the nearest unit)