Answer:
The required time is 3.54 seconds approximately or
seconds.
Explanation:
Consider the provided function.
![h(t) = 600-16t^2](https://img.qammunity.org/2019/formulas/mathematics/college/x9n7itvns7r6jvg3u1d1hblc2wk0lggve4.png)
Where t represents the time in seconds and h represents the height.
It is given that we need to find the time to reach a height of 400 feet.
Substitute h(t)=400 in the above function.
![400= 600-16t^2](https://img.qammunity.org/2019/formulas/mathematics/college/plvq5a4oonm6bnmppart8tcyeg90tqe07i.png)
![400- 600=-16t^2](https://img.qammunity.org/2019/formulas/mathematics/college/seczsgvd5v862rxs3zzitseoke6k681mi3.png)
![-200=-16t^2](https://img.qammunity.org/2019/formulas/mathematics/college/nrurl6816985vfvk0l3yiuq4jw9yik9d7f.png)
![200=16t^2](https://img.qammunity.org/2019/formulas/mathematics/college/22wbkjpsjho6pmezk0cbifeig0540bvh3u.png)
![(50)/(4)=t^2](https://img.qammunity.org/2019/formulas/mathematics/college/gti0szv5pw9nmcmj6y9hqg3hku3dtacwo1.png)
![t=\sqrt{(50)/(4)} \\t=(5)/(2)√(2)](https://img.qammunity.org/2019/formulas/mathematics/college/vwubbxen4h56cuy8t5v5llnl4cvx82nt71.png)
Neglect the negative value as time should be a positive number.
Or
![t\approx 3.54](https://img.qammunity.org/2019/formulas/mathematics/college/qg0jjd4e5lqchyp5q2u0g2xfz8q99nc5re.png)
Hence, the required time is 3.54 seconds approximately.