45.1k views
0 votes
Find an upper limit for the zeroes 2x^4 -7x^3 + 4x^2 + 7x - 6 = 0

A. -1

B. 4

C. 5

User Jiloc
by
7.8k points

1 Answer

5 votes

Answer-

2 is the upper limit for the zeros.

Solution-

The given function f(x) is,


2x^4 -7x^3 + 4x^2 + 7x - 6 = 0

For calculating the zeros,


\Rightarrow f(x)=0


\Rightarrow 2x^4 -7x^3 + 4x^2 + 7x - 6 = 0


\Rightarrow 2x^4-4x^3-3x^3+6x^2-2x^2+ 4x+3x-6=0


\Rightarrow 2x^3(x-2)-3x^2(x-2)-2x(x-2)+3(x-2)=0


\Rightarrow (x-2)(2x^3-3x^2-2x+3)=0


\Rightarrow (x-2)(x^2(2x-3)-1(2x-3))=0


\Rightarrow (x-2)(x^2-1)(2x-3)=0


\Rightarrow (x-2)(x+1)(x-1)(2x-3)=0


\Rightarrow x-2=0,\ x+1=0,\ x-1=0,\ 2x-3=0


\Rightarrow x=2,\ x=-1,\ x=1,\ x=(3)/(2)

From all the 4 roots, it can be obtained that 2 is the greatest zero.

Find an upper limit for the zeroes 2x^4 -7x^3 + 4x^2 + 7x - 6 = 0 A. -1 B. 4 C. 5-example-1
User Run
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories