here we can use energy conservation
like initial kinetic + potential energy is always conserved and it will be same at all points
so we can say
![KE_i + PE_i = KE_f + PE_f](https://img.qammunity.org/2019/formulas/physics/middle-school/4h2yl810nox3359eymr40yxrshicmbajgs.png)
![(1)/(2)mv_i^2 + mgh_1 = (1)/(2)mv_f^2 + mgh_2](https://img.qammunity.org/2019/formulas/physics/middle-school/4qe51tvqdydomgfwbajidlwa4jt2r7mhmf.png)
now we can plug in all the given values in it
![v_i = 0](https://img.qammunity.org/2019/formulas/physics/high-school/tpg6bircohmwxhi0sp9ppcmm4bceez83s1.png)
![h_1 = 443 m](https://img.qammunity.org/2019/formulas/physics/middle-school/1tmkwagcwary8urn9lelxwgecwqzf7qtce.png)
![h_2 = 221 m](https://img.qammunity.org/2019/formulas/physics/middle-school/uyp618fvecilefdwbk287fy0ppauh8innx.png)
![(1)/(2)m*0 + m*9.8*443 = (1)/(2) m*v_f^2 + m*9.8*221](https://img.qammunity.org/2019/formulas/physics/middle-school/qrv4ln65ue3gla6vxbrdeclsqlhzgrj5ib.png)
now divide whole equation by mass "m"
![9.8*443 = (1)/(2) v_f^2 + 9.8*221](https://img.qammunity.org/2019/formulas/physics/middle-school/e38hbokrcqggu3mbwkz9u0eheavfcg404b.png)
![2175.6 = (1)/(2)v_f^2](https://img.qammunity.org/2019/formulas/physics/middle-school/e2y86rfvekk1thbj9tn230crgs5997e1r3.png)
![v_f = 65.96 m/s](https://img.qammunity.org/2019/formulas/physics/middle-school/xs6cz4s9sxtapq93ysne2lrg92dxuj07t0.png)
so final speed will be 65.96 m/s