Answer:
![\ x \\eq 3\](https://img.qammunity.org/2019/formulas/mathematics/college/yokbep7zibasluxsc84fn4zuk418a9wsv3.png)
![\ x < 3 \cup x > 3\](https://img.qammunity.org/2019/formulas/mathematics/college/btg1i90gejm615lgsvctobjns2s3zg7atd.png)
![\ x > 3, x \in R\ \cup\x](https://img.qammunity.org/2019/formulas/mathematics/college/7zj8zh0fttduqxtu0nv3izf8l076sutl1d.png)
Explanation:
To find the domain of a rational expression like
you need to find out where the denominator is 0 because you cannot divide by 0
So, take the denominator x - 3 and set it to zero and solve for x
x - 3 = 0
x = 3
So the domain is all real numbers but where x = 3. You can write this in a few different ways in set notation.
---------------------------------------
NOTE
R = real numbers
= element of
| = such that
---------------------------------------
![\ x \\eq 3\](https://img.qammunity.org/2019/formulas/mathematics/college/yokbep7zibasluxsc84fn4zuk418a9wsv3.png)
Or you could write it this way
![\ x < 3 \cup x > 3\](https://img.qammunity.org/2019/formulas/mathematics/college/btg1i90gejm615lgsvctobjns2s3zg7atd.png)
Or you could write it this way
![\x \cup\ x < 3, x \in R\](https://img.qammunity.org/2019/formulas/mathematics/college/7zj8zh0fttduqxtu0nv3izf8l076sutl1d.png)