The expression is:
![\sqrt{(x^(3)x^(8))/(x^(6))}](https://img.qammunity.org/2019/formulas/mathematics/high-school/9vyqrebh358qm5r216cceyfaye20veaoyt.png)
We will use following steps to simplify it:
Step 1:
Use product property of exponents:
![x^(a)*x^(b)=x^(a+b)](https://img.qammunity.org/2019/formulas/mathematics/high-school/rk2k5xo1m0zti2ct30g41h7yqis66zmgek.png)
![x^(3)*x^(8)=x^(8+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mpoavrue35rj3s2jc7dp6p4j5jnj3mhuf1.png)
![x^(3)*x^(8)=x^(11)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7prz8n1muckt7icmwqavgy741joeojmks7.png)
That gives us the expression:
![\sqrt{(x^(11))/(x^(6))}](https://img.qammunity.org/2019/formulas/mathematics/high-school/lxk6tdfkuseo8rq89aow0uuij1oywi6hvn.png)
Step 2:
Use division property of exponents:
![(x^(a))/(x^(b))=x^(a-b)](https://img.qammunity.org/2019/formulas/mathematics/high-school/angxfpjtnkyxtnql56fbvdfx7dbvva4s9e.png)
![(x^(11))/(x^(6))=x^(11-6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/p82hy8us5dscn4p2qe7amtu09m02zst0am.png)
![(x^(11))/(x^(6))=x^(5)](https://img.qammunity.org/2019/formulas/mathematics/high-school/o31hy3ja6e2rtf2i5s7lg2hof2fqyqt24u.png)
This simplifies the expression:
![\sqrt{x^(5)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/9dz7hw5s2cdu7iapp0pbbz8ecg3rst0mxt.png)
Step 3:
Writing the square root as power 1/2:
![\sqrt{x^(5)}=x^{5*(1)/(2) }](https://img.qammunity.org/2019/formulas/mathematics/high-school/xyl0may0tctni0i5cq0d85xg51jpdhvwsc.png)
![\sqrt{x^(5)}=x^{(5)/(2) }](https://img.qammunity.org/2019/formulas/mathematics/high-school/wihj0k5jjqyxio71cmsweykndw1ukzkcvm.png)
Answer:
The final simplified form in x^n form is :
![x^{(5)/(2) }](https://img.qammunity.org/2019/formulas/mathematics/high-school/5yj6qotxzk9lzxxi6f7wceg6wg6ld3bmxt.png)