Answer:
![f(x)=\left \{ {{x^2+4}\ \ \ \ \ x<2 \atop {-x+4}\ \ \ x\geq 2}\right](https://img.qammunity.org/2019/formulas/mathematics/high-school/s1mpb9e2zwlzt05vqgralxzcs9tqhs0qyq.png)
C is correct
Explanation:
In the given graph function break at point x=2.
Left side about point x=2 is parabolic and right side straight line.
So, it would be piece wise function.
For parabola:
vertex: (0,4) and passing point (2,8)
![y=a(x-h)^2+k](https://img.qammunity.org/2019/formulas/mathematics/college/tbh7747l327y3m70wjz077h6ij0n8qkom0.png)
![y=ax^2+4](https://img.qammunity.org/2019/formulas/mathematics/high-school/mn78rr5f01f7h02k3vvu6vhzebtylzydwz.png)
![a=1](https://img.qammunity.org/2019/formulas/mathematics/high-school/b58co53wxrkria39mo7dgllw9nx18hk49e.png)
For x<2
For straight line:
Twp points (4,0) and (2,2)
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/sl6uu127seq6ocbe9measc5n4stnu7dak6.png)
![y-2=(0-2)/(4-2)(x-2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/1r2zjj7xl29xqts04yplmqy2k91mt61lgr.png)
![y-2=-1(x-2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lxr0jmoria2f6dkzuma8neh66q2igt87dl.png)
For x≥2
Hence, The piece wise function will be
![f(x)=\left \{ {{x^2+4}\ \ \ \ \ x<2 \atop {-x+4}\ \ \ x\geq 2}\right](https://img.qammunity.org/2019/formulas/mathematics/high-school/s1mpb9e2zwlzt05vqgralxzcs9tqhs0qyq.png)