Answer:
The correct option is B.
Explanation:
The given functions are
![f(x)=-4x^2-6x-1](https://img.qammunity.org/2019/formulas/mathematics/college/i9q2n7j2skq9rua2go1zax1hbup137qym9.png)
![g(x)=-x^2-5x+3](https://img.qammunity.org/2019/formulas/mathematics/college/72qlb3equjwjl6ozmpvzhcfdefhrkih6cd.png)
Using the p addition property of functions (f + g)(x) can be written as
![(f+g)(x)=f(x)+g(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/je22tmlnjdws97ix1fupe5ppgndpvnn151.png)
Substitute the values of each function in the above equation.
![(f+g)(x)=-4x^2-6x-1-x^2-5x+3](https://img.qammunity.org/2019/formulas/mathematics/college/3uuezybf0nrflejsfpm6h60lx2ofbxyaqh.png)
Combine like terms.
![(f+g)(x)=(-4x^2-x^2)+(-6x-5x)+(-1+2)](https://img.qammunity.org/2019/formulas/mathematics/college/ulacpsa5t6op2hd9mmqm6aepdexw0p7ajj.png)
![(f+g)(x)=-5x^2-11x+2](https://img.qammunity.org/2019/formulas/mathematics/college/fcj7l25sxp255psovkbd6dkisnyl2rhm9k.png)
Therefore the correct option is B.