Answer:
![\displaystyle (dy)/(dx) = -4x \sin x^2 \sin (\cos x^2) \cos (\cos x^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wgdc87xh52g7h8k4dvitowcrlohzzbxp1a.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ijuuby0owovgvvmkyt63pxr8cpkn8j9mgp.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = \sin^2 (\cos x^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vh435rdu9d7ss5brxf0aznxgnfbo76cdkr.png)
Step 2: Differentiate
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = 2 \sin (\cos x^2) \Big( \sin (\cos x^2) \Big)'](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8ww5gvai9650qoejsliqhlushwnr86ffm6.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = -2 \sin (\cos x^2) \cos (\cos x^2) (\cos x^2)'](https://img.qammunity.org/2019/formulas/mathematics/middle-school/u8heldsev44phjxvkeeskdpf3q6d7f3257.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = -2 \sin x^2 \sin (\cos x^2) \cos (\cos x^2) (x^2)'](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gjtvcdx89ha4bbzhtzlnzrpzyarsf9t37m.png)
- Basic Power Rule:
![\displaystyle y' = -4x \sin x^2 \sin (\cos x^2) \cos (\cos x^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/egxqjgca32jjnlmcfkybesnqajmr3k83g3.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation