86.2k views
3 votes
How do you solve this problem?

How do you solve this problem?-example-1

1 Answer

4 votes

The particle has acceleration vector


\vec a=\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)\,\vec\imath+\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)\,\vec\jmath

We're told that it starts off at the origin, so that its position vector at
t=0 is


\vec r_0=\vec0

and that it has an initial velocity of 12 m/s in the positive
x direction, or equivalently its initial velocity vector is


\vec v_0=\left(12\,(\mathrm m)/(\mathrm s)\right)\,\vec\imath

To find the velocity vector for the particle at time
t, we integrate the acceleration vector:


\vec v=\vec v_0+\displaystyle\int_0^t\vec a\,\mathrm d\tau


\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\displaystyle\int_0^t\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\jmath


\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right]\,\vec\imath+\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\vec\jmath

Then we integrate this to find the position vector at time
t:


\vec r=\vec r_0+\displaystyle\int_0^t\vec v\,\mathrm d\tau


\vec r=\left[\displaystyle\int_0^t\left(12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\mathrm d\tau\right]\,\vec\jmath


\vec r=\left[\left(12\,(\mathrm m)/(\mathrm s)\right)t+\left(-1.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\right]\,\vec\imath+\left(2.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\,\vec\jmath

Solve for the time when the
y coordinate is 18 m:


18\,\mathrm m=\left(2.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\implies t=3.0\,\mathrm s

At this point, the
x coordinate is


\left(12\,(\mathrm m)/(\mathrm s)\right)(3.0\,\mathrm s)+\left(-1.0\,(\mathrm m)/(\mathrm s^2)\right)(3.0\,\mathrm s)^2=27\,\mathrm m

so the answer is C.

User Peter Leupold
by
7.5k points

No related questions found