The particle has acceleration vector

We're told that it starts off at the origin, so that its position vector at
is

and that it has an initial velocity of 12 m/s in the positive
direction, or equivalently its initial velocity vector is

To find the velocity vector for the particle at time
, we integrate the acceleration vector:

![\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\displaystyle\int_0^t\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\jmath](https://img.qammunity.org/2019/formulas/physics/middle-school/crp17xql5jt7k4ncjk8l6ux1g4jmwjdoww.png)
![\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right]\,\vec\imath+\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\vec\jmath](https://img.qammunity.org/2019/formulas/physics/middle-school/he1wam86i16s82y0hdgpadvu8jpmxdaogt.png)
Then we integrate this to find the position vector at time
:

![\vec r=\left[\displaystyle\int_0^t\left(12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\mathrm d\tau\right]\,\vec\jmath](https://img.qammunity.org/2019/formulas/physics/middle-school/qs1cnj8boi0yolx8d1bsidpbrtkp9ymw9b.png)
![\vec r=\left[\left(12\,(\mathrm m)/(\mathrm s)\right)t+\left(-1.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\right]\,\vec\imath+\left(2.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\,\vec\jmath](https://img.qammunity.org/2019/formulas/physics/middle-school/mcyiucjmrrvw3mlhk1faz33byyu562v8gw.png)
Solve for the time when the
coordinate is 18 m:

At this point, the
coordinate is

so the answer is C.