86.2k views
3 votes
How do you solve this problem?

How do you solve this problem?-example-1

1 Answer

4 votes

The particle has acceleration vector


\vec a=\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)\,\vec\imath+\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)\,\vec\jmath

We're told that it starts off at the origin, so that its position vector at
t=0 is


\vec r_0=\vec0

and that it has an initial velocity of 12 m/s in the positive
x direction, or equivalently its initial velocity vector is


\vec v_0=\left(12\,(\mathrm m)/(\mathrm s)\right)\,\vec\imath

To find the velocity vector for the particle at time
t, we integrate the acceleration vector:


\vec v=\vec v_0+\displaystyle\int_0^t\vec a\,\mathrm d\tau


\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\displaystyle\int_0^t\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)\,\mathrm d\tau\right]\,\vec\jmath


\vec v=\left[12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right]\,\vec\imath+\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\vec\jmath

Then we integrate this to find the position vector at time
t:


\vec r=\vec r_0+\displaystyle\int_0^t\vec v\,\mathrm d\tau


\vec r=\left[\displaystyle\int_0^t\left(12\,(\mathrm m)/(\mathrm s)+\left(-2.0\,(\mathrm m)/(\mathrm s^2)\right)t\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,(\mathrm m)/(\mathrm s^2)\right)t\,\mathrm d\tau\right]\,\vec\jmath


\vec r=\left[\left(12\,(\mathrm m)/(\mathrm s)\right)t+\left(-1.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\right]\,\vec\imath+\left(2.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\,\vec\jmath

Solve for the time when the
y coordinate is 18 m:


18\,\mathrm m=\left(2.0\,(\mathrm m)/(\mathrm s^2)\right)t^2\implies t=3.0\,\mathrm s

At this point, the
x coordinate is


\left(12\,(\mathrm m)/(\mathrm s)\right)(3.0\,\mathrm s)+\left(-1.0\,(\mathrm m)/(\mathrm s^2)\right)(3.0\,\mathrm s)^2=27\,\mathrm m

so the answer is C.

User Peter Leupold
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.