a) This particular limit is of the indeterminate form,
![( \infty )/( \infty )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nsg1540b7x8im11jqou65qpwem6irzlrql.png)
if we plug in infinity directly, though it is not a number just to check.
If a limit is in this form, we apply L'Hopital's Rule.
's
![Lim_(x \rightarrow \infty ) ( ln(x ^(2) + 1 ) )/(x) = Lim_ {x \rightarrow \infty } (( ln(x ^(2) + 1 ) ) ')/(x ' )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/s8as2o5196fnyhd8511vsa0dd7dd352iom.png)
So we take the derivatives and obtain,
![Lim_ {x \rightarrow \infty } ( ln(x ^(2) + 1 ) )/(x) = Lim_(x \rightarrow \infty ) ( (2x)/(x^(2) + 1) )/(1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/plijazonpxnwk0pesa7jawz5z4kugyhdgm.png)
Still it is of the same indeterminate form, so we apply the rule again,
![Lim_(x \rightarrow \infty ) ( ln(x ^(2) + 1 ) )/(x) = Lim_(x \rightarrow \infty ) ( 2 )/(2x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nwslbu7fd6k8l0rd0vsl6vetla8oetj3xm.png)
This simplifies to,
![Lim_(x \rightarrow \infty ) ( ln(x ^(2) + 1 ) )/(x) = Lim_(x \rightarrow \infty ) ( 1 )/(x) = 0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/kb3c4ab5xnguanxetl4lupi9oq3h494mch.png)
b) This limit is also of the indeterminate form,
![(0)/(0)](https://img.qammunity.org/2019/formulas/mathematics/college/m2p9u8atxi9x9ip920r47rnr34x9ube4xn.png)
we still apply the L'Hopital's Rule,
![Lim_ {x \rightarrow0 }( tanx)/(x) = Lim_ {x \rightarrow0 } ( (tanx)')/(x ' )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/yq3ocdysa5ddke36gp29zuyqx8alfrpvzi.png)
![Lim_ {x \rightarrow0 }( tanx)/(x) = Lim_ {x \rightarrow0 } ( \sec ^(2) (x) )/(1 )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/p9tl5khpsu9obvr5v61oudhzu2xo9cn5ad.png)
When we plug in zero now we obtain,
![Lim_ {x \rightarrow0 }( tanx)/(x) = Lim_ {x \rightarrow0 } ( \sec ^(2) (0) )/(1 ) = (1)/(1) = 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jabto95mb0taab4e7fugydfqvoqktkd6eo.png)
c) This also in the same indeterminate form
![Lim_ {x \rightarrow0 }\frac{ {e}^(2x) - 1 - 2x}{ {x}^(2) } = Lim_ {x \rightarrow0 } \frac{ ({e}^(2x) - 1 - 2x)'}{( {x}^(2) ) ' }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/er9l6kqhi5xdh2asxii4qbpaxatjj7jfws.png)
![Lim_ {x \rightarrow0 }\frac{ {e}^(2x) - 1 - 2x}{ {x}^(2) } = Lim_ {x \rightarrow0 } \frac{ (2{e}^(2x) - 2)}{ 2x }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/lr3j5hir2ytldunbcvxbrtt1j88eeixj9r.png)
It is still of that indeterminate form so we apply the rule again, to obtain;
![Lim_ {x \rightarrow0 }\frac{ {e}^(2x) - 1 - 2x}{ {x}^(2) } = Lim_ {x \rightarrow0 } \frac{ (4{e}^(2x) )}{ 2 }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gew82ahbp2px0umikc4deybepcm7brjpcu.png)
Now we have remove the discontinuity, we can evaluate the limit now, plugging in zero to obtain;
![Lim_ {x \rightarrow0 }\frac{ {e}^(2x) - 1 - 2x}{ {x}^(2) } = \frac{ (4{e}^(2(0)) )}{ 2 }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9hijmbntuqk9kzjtixx14g9v82hkzt2l7x.png)
This gives us;
![Lim_ {x \rightarrow0 }\frac{ {e}^(2x) - 1 - 2x}{ {x}^(2) } =( (4(1) ))/( 2 )=2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gzfb2uob4uf978maqt0avdb3g43dbdb1iu.png)
d)
![Lim_ {x \rightarrow +\infty }√(x^2+2x)-x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9b8g9z1beb7wp3anshnogh1t0pcr71i33v.png)
For this kind of question we need to rationalize the radical function, to obtain;
![Lim_ {x \rightarrow +\infty }(2x)/(√(x^2+2x)+x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/bfwg2cqfn0yq9i35e2cxfb4amb23e8c6g1.png)
We now divide both the numerator and denominator by x, to obtain,
![Lim_ {x \rightarrow +\infty }\frac{2}{\sqrt{1+(2)/(x)}+1}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/brnyqq2l8jc73vx82arh5k6mw39m1ulxd7.png)
This simplifies to,
![=(2)/(√(1+0)+1)=1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ubok055li1azwbrulbt874iuabk9jc8efu.png)