Answer:
![48^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mxus0zu61l1oetch53fi8r22v3ca6mhy1m.png)
Explanation:
Consider we need to find
,
Since, if two chords of a circle intersect outside the circle then the measure of intercepted angle is half of the difference of the measures of intercepted arcs.
Thus,
![m\angle ADJ = \frac{m\widehat{AJ}-m\widehat{BE}}{2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/o1bwl0uwl31dh6dxlo5jxofan8yidksiue.png)
By the diagram,
![37^(\circ)=\frac{m\widehat{AJ}-38^(\circ)}{2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/d0456u6rhpiltsfau8thn5o8yqv4hplksj.png)
![74^(\circ)=m\widehat{AJ}-38^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/m1qkm72hgqbuyfft0b31e9bjf34xs1tfmd.png)
![\implies m\widehat{AJ}=74^(\circ)+38^(\circ)=112^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/w7luzhagh02eh44dt27dii3yr4ph30oq70.png)
Now,
![m\angle AGJ = \frac{m\widehat{AJ}-m\widehat{FH}}{2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/nyfok9f5vv3h0y5pbiugio4y2yg1nn1qck.png)
![32^(\circ)=\frac{112^(\circ)-m\widehat{FH}}{2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/a6n3we8ph3yc0u3ada6pe62p9dkmzx4fd5.png)
![64^(\circ)=112^(\circ)-m\widehat{FH}](https://img.qammunity.org/2019/formulas/mathematics/high-school/jd7y63fjkunrm73254h00b1ko9tif50zz8.png)
![\implies m\widehat{FH}= 112^(\circ)-64^(\circ)=48^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4jcdv8nrq470ow0asqtjmie28mnwe8d37s.png)
Hence, SECOND OPTION would be correct.