ANSWER
The correct answer is C
Step-by-step explanation
This is the composition the two functions
We have
![a(x) = 3x + 1](https://img.qammunity.org/2019/formulas/mathematics/high-school/c9ilztey0aimsekpenqlll6it65sv5kdtf.png)
and
![b(x) = √(x - 4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/5o1m2zijvjju26ovxdjmr2t39lj56nlwq8.png)
![(b \circ \: a)(x) = b(a(x))](https://img.qammunity.org/2019/formulas/mathematics/high-school/h466shlg075hz5m8abwwdp1ps4tn4qj5rc.png)
![(b \circ \: a)(x) = b(3x + 1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/9kiquh5kfybh778qlccif2fv0gcjh8nr9z.png)
We substitute to obtain,
![(b \circ \: a)(x) = √((3x + 1) - 4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dyt28wcwbii01636qvf3dy483ez4d3au9v.png)
![(b \circ \: a)(x) = √(3x - 3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/szkt4tae4d141tq06icmo8qz4do6z5667i.png)
The domain of this function can be found by solving,
![3x - 3 \geqslant 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/9spbbq30uebfr6pk5z8xhegjq95jdie082.png)
This implies that
![3x \geqslant 3](https://img.qammunity.org/2019/formulas/mathematics/high-school/287p1jn6argydsdvrz7d9v5ryedoy0chwd.png)
Or
![x \geqslant 1](https://img.qammunity.org/2019/formulas/mathematics/high-school/az8s3ni6m9f6ru74e29oygynufiujvrxuq.png)
In interval notation, we have,
![[1, \infty )](https://img.qammunity.org/2019/formulas/mathematics/high-school/hg4kwpaf0zva76e4r2pb1wohpvlpz1oo7t.png)
The correct answer is option C