88.0k views
1 vote
Solve each inequality.

1.
(1-7n)/(5)  > 10

User Sliq
by
8.4k points

2 Answers

1 vote


Solution, (1-7n)/(5)>10\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<-7\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-7\right)\end{bmatrix}


Steps:


\mathrm{Multiply\:both\:sides\:by\:}5, (5\left(1-7n\right))/(5)>10\cdot \:5


\mathrm{Simplify}, 1-7n>50


\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}, 1-7n-1>50-1


\mathrm{Simplify}, -7n>49


Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right), \left(-7n\right)\left(-1\right)<49\left(-1\right)


\mathrm{Simplify}, 7n<-49


\mathrm{Divide\:both\:sides\:by\:}7, (7n)/(7)<(-49)/(7)


\mathrm{Simplify}, n<-7

The correct answer is n<-7

Hope This Helps!!!

User TechyDude
by
7.5k points
2 votes

First multiply 5 on both sides to get rid of the five on the bottom.


(1-7n)/(5*5)
>10*5


1-7n>50

Subtract 1 from both sides of the inequality.


1-1-7n>50-1


-7n>49

Divide -7 on both sides, and flip the inequality sign since we are dividing by a negative.


(-7n)/(7)
>(49)/(-7)


n<-7

The solution to the inequality is n<-7.

User Shahidh
by
8.1k points