we are given
![f(x)=e^x sin(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1ezv0oq4wtyrmuenvj670vj42pvr6udwud.png)
(a)
Firstly, we will find critical numbers
so, we will find derivative
![f'(x)=e^x sin(x)+e^x cos(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z3cruffa5j6o8y5w284vybm8oty644yt6i.png)
now, we can set it to 0
and then we can solve for x
we get
![x=(3\pi )/(4) ,x=(7\pi )/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/62ofe7a0kbmaygckhazdz26zvgcl9nh1cv.png)
now, we can draw a number line and then locate these values
and then we can find sign of derivative on each intervals
increasing intervals:
![[0,(3\pi)/(4) )U((7\pi)/(4) , 2\pi]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o27pprpyjlmsx1p392l26r7bwusp7odb00.png)
Decreasing interval:
![((3\pi)/(4) ,(7\pi)/(4) )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uraps37bjjoj3x06pg3ikmwwxtg1r9ha9k.png)
(b)
Local maxima:
It is the value of x where function changes from increasing to decreasing
so, local maxima is at
![x=(3\pi)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/n0evja7sne60n2t2l0shql9cjm5wykd02b.png)
Local minima:
It is the value of x where function changes from decreasing to increasing
so, local minima is at
![x=(7\pi)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/u6lm0d23i91wxhqvm520jijy9fy1799u2z.png)
now, we will plug critical numbers and end values into original function
and we get
At x=0:
![f(0)=e^0 sin(0)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o1hhtlvrbv68vlxo5hrn80e1g5ymb0gy4i.png)
![f(0)=0](https://img.qammunity.org/2019/formulas/mathematics/college/lpqeqdw63kzdg1bp41a6jc0o64sx0loal2.png)
At
:
![f((3\pi)/(4))=e^{(3\pi)/(4)} sin((3\pi)/(4))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zym7xen3iv6313y3piyaqilgjf6xwlalu2.png)
![f((3\pi)/(4))=7.46049](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hdjrlnyfz4khaqm76v4xir869ohgyvajvy.png)
At
:
![f((7\pi)/(4))=e^{(7\pi)/(4)} sin((7\pi)/(4))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/btj4kr3f23qzv2jfq266qanan3juin4c58.png)
![f((7\pi)/(4))=-172.640](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o66cik9o91v4x0tf38xjnrf8b409rsgtt8.png)
At
:
![f(2\pi)=e^(2\pi) sin(2\pi )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1e4e145wenz33ytlsunqkkds08ka4p11ao.png)
![f(2\pi )=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fgwx1rydpbye3ygyhxtawhfsagq4sat1vj.png)
Global maxima:
It is the largest value among them
so, we get
![f((3\pi)/(4))=7.46049](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hdjrlnyfz4khaqm76v4xir869ohgyvajvy.png)
Global minima:
It is the largest value among them
so, we get
![f((7\pi)/(4))=-172.640](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o66cik9o91v4x0tf38xjnrf8b409rsgtt8.png)
(c)
now, we can find second derivative
![f'(x)=e^x sin(x)+e^x cos(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z3cruffa5j6o8y5w284vybm8oty644yt6i.png)
![f''(x)=(d)/(dx)\left(e^x\sin \left(x\right)+e^x\cos \left(x\right)\right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/tnfpshuy26tix1t0zp8rbry5nv91bynsmo.png)
![=(d)/(dx)\left(e^x\sin \left(x\right)\right)+(d)/(dx)\left(e^x\cos \left(x\right)\right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3v5d3rbnqopgk3q397leoltlvrpqw3l7st.png)
![=e^x\sin \left(x\right)+\cos \left(x\right)e^x+e^x\cos \left(x\right)-e^x\sin \left(x\right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/e3owaeamhd9tttd9bcwh24c1x7tk0xh80o.png)
![f''(x)=2e^x\cos \left(x\right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/k3oqk5goz1ycx86pqdv4ywy1ig1f0fwwmc.png)
now, we can set it to 0
and then we can solve for x
![f''(x)=2e^x\cos \left(x\right)=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fdg6uf02mta2a09d7rjqt4evx3dhy2ldtb.png)
so, we get
![x=(\pi)/(2) ,x=(3\pi)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/euxp1a1b1fdbc21im3g0dyu276ow440xhm.png)
now, we can draw number line and locate these values
and then we can find sign of second derivative on each intervals
concave up intervals:
![[0,(\pi)/(2))U((3\pi)/(2), 2\pi]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wpi46otonrvdt3elxjlpfd9xpxm3lvg26o.png)
Concave down intervals:
![((\pi)/(2) ,(3\pi)/(2))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fptljxt3ku8jp00yr63x6zc6m6s5pvvyud.png)
Turning points:
All values of x for which concavity changes
so, we get turning points at
![x=(\pi)/(2) ,x=(3\pi)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/euxp1a1b1fdbc21im3g0dyu276ow440xhm.png)