148k views
0 votes
Below is the graph of f(x)= ln (x) how would you describe the graph of g (x) = 1/3 ln (x)

2 Answers

2 votes

Answer:

compress vertically by factor of 1/3 to produce graph of g(x)=1/3 ln(x)

Explanation:

User NawK
by
8.5k points
3 votes

Graph of f(x)=ln(x) is missing but we can still answer this problem.

We just have to explain about what will happen if f(x)=ln(x) changes into g(x)=1/3 ln(x)

To find that compare both functions.

We see that ln(x) gets multiplied by 1/3 to produce graph of 1/3ln(x)

there multiplifaction factor 1/3 lies between 0 and 1.

Hence graph of f(x) will compress vertically by factor of 1/3 to produce graph of g(x).

So for the final answer we will write f(x) compress vertically by factor of 1/3 to produce graph of g(x)=1/3 ln(x)

You can check attached file for more related rules

Below is the graph of f(x)= ln (x) how would you describe the graph of g (x) = 1/3 ln-example-1
User Rosanne
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories