73.1k views
1 vote
What is the antiderivative of e^x^2?

1 Answer

3 votes

Answer: The antiderivative of
e^{x^(2)} is
√(\pi) \sqrt{e^(x^2)-1} +C.

Step-by-step explanation:


I=\int{e^(x^2)dx}\\I^2=\int{e^(x^2)dx}\int{e^(x^2)dx}

Using dawson integral.


I^2=\int{e^(x^2)dx}\int{e^(y^2)dy}


I^2=\int{\int{e^(x^2+y^2)dxdy}}

Put
x^2+y^2=r^2


I^2=\int{\int{e^(r^2)rdrd\theta}}


\int_(0)^(2\pi){d\theta}\int_(0)^(x){re^(r^2)dr}

Use substitution method and sunbstitute
r^2=t.


\int_(0)^(2\pi){d\theta}\int_(0)^(x^2){(1)/(2)e^tdt}


I^2=(1)/(2)|\theta|_(0)^(2\pi)|e^t|_(0)^(x^2)\\I^2=(1)/(2)(2\pi)(e^(x^2)-1)\\I=√(\pi)\sqrt{e^(x^2)-1}.

Therefore, the antiderivative of
e^{x^(2)} is
√(\pi) \sqrt{e^(x^2)-1} +C.


User Cieunteung
by
5.8k points