45.2k views
3 votes
In a geometric sequence the ratio between consecutive terms is

User Georgepiva
by
8.0k points

2 Answers

1 vote

if the terms of a geometric sequence are


a_(1),
a_(2),
a_(3),
a_(4), .....

then the common ratio r =
(a_(4) )/(a_(3) ) =
(a_(3) )/(a_(2) ) =
(a_(2) )/(a_(1) )


User Negra
by
7.7k points
2 votes

Answer:

In a geometric sequence the ratio between consecutive terms is constant.

Explanation:

A geometric sequence is that sequence where the ratio between two consecutive terms is constant.

This ratio is called the common ratio.

For example:

Lets take an example :

1,6,36,216,1296,.....

To find the common ration we divide the second term by first term.


(6)/(1) =(216)/(36) =6

Here, the common ratio is 6.

User JJD
by
8.5k points

No related questions found