233k views
3 votes
Factor the expression completely over the complex numbers.

x^4 + 10x^2 + 25



Enter your answer in the box

User Simanas
by
7.0k points

1 Answer

4 votes


\displaystyle\\x^4+10x^2+25=\\\\=x^4+5x^2+5x^2+25=\\\\=(x^4+5x^2)+(5x^2+25)=\\\\=x^2(x^2+5)+5(x^2+5)=\\\\=(x^2+5)(x^2+5)=\\\\=\left(x^2+\left(√(5)\right)^2\right)\left(x^2+\left(√(5)\right)^2\right)=\\\\=\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)=\\\\=\Big(x+i√(5)\Big)\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)\Big(x-i√(5)\Big)=\\\\=\boxed{\Big(x+i√(5)\Big)^2\Big(x-i√(5)\Big)^2}




User Anshuma
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.