233k views
3 votes
Factor the expression completely over the complex numbers.

x^4 + 10x^2 + 25



Enter your answer in the box

User Simanas
by
7.0k points

1 Answer

4 votes


\displaystyle\\x^4+10x^2+25=\\\\=x^4+5x^2+5x^2+25=\\\\=(x^4+5x^2)+(5x^2+25)=\\\\=x^2(x^2+5)+5(x^2+5)=\\\\=(x^2+5)(x^2+5)=\\\\=\left(x^2+\left(√(5)\right)^2\right)\left(x^2+\left(√(5)\right)^2\right)=\\\\=\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)=\\\\=\Big(x+i√(5)\Big)\Big(x+i√(5)\Big)\Big(x-i√(5)\Big)\Big(x-i√(5)\Big)=\\\\=\boxed{\Big(x+i√(5)\Big)^2\Big(x-i√(5)\Big)^2}




User Anshuma
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories