77.0k views
2 votes
A parallelogram has vertices J(-3,9), K(3,9), L(1,1), and M(-5,1).

Show opposite sides are congruent by using the distance formula

User Jan Groth
by
8.4k points

1 Answer

2 votes

Using the distance formula;
d=√((x_2-x_1)^2+(y_2-y_1)^2)


We find the length of each side of the parallelogram as follows:


Side JK



|JK|=√((3--3)^2+(9-9)^2)



|JK|=√((3+3)^2+(0)^2)



|JK|=√((6)^2+(0)^2)



|JK|=√((6)^2+(0)^2)



|JK|=√((6)^2+0)



|JK|=√((6)^2)


|JK|=√((6)^2)=6 units


Side KL



|KL|=√((1-3)^2+(1-9)^2)



|KL|=√((-2)^2+(-8)^2)



|KL|=√(4+64)



|KL|=√(68)



|KL|=8.25 units


Side LM




|LM|=√((-5-1)^2+(1-1)^2)



|LM|=√((-6)^2+(0)^2)



|LM|=√(36)



|LM|=6 units



Side MJ



|MJ|=√((-3--5)^2+(9-1)^2)



|MJ|=√((-3+5)^2+(9-1)^2)



|MJ|=√((2)^2+(8)^2)



|MJ|=√(4+64)



|MJ|=√(68)



|MJ|=8.25 units.


We can see that


|JK|=|ML|=6 units


|MJ|=|LK|=8.25 units .


Since the opposite sides are equal, they are congruent.

See diagram



















A parallelogram has vertices J(-3,9), K(3,9), L(1,1), and M(-5,1). Show opposite sides-example-1
User MSaudi
by
8.7k points

No related questions found