We have
.
First let us factor the 2 to obtain,
![2(x^2-4)](https://img.qammunity.org/2019/formulas/mathematics/college/tj869v8bd3d5gzx7aemswt7s8q4whcyu9x.png)
We can now see clearly that the expression inside the parentheses is a difference of two squares.
We now write the 4 as 2². So that we obtain the expression,
![2(x^2-2^2)](https://img.qammunity.org/2019/formulas/mathematics/college/ntyvzlhynxp158mf5nkjt3ekpjmvx1bkt2.png)
Recall that
![a^2-b^2=(a+b)(a-b)](https://img.qammunity.org/2019/formulas/mathematics/college/i3jb67wkeponvsupf6syhjk57gr04awhi6.png)
Hence our expression becomes,
![2(x+2)(x-2)](https://img.qammunity.org/2019/formulas/mathematics/college/3866c6aj7jcg38yk761lskfo37wd9laryv.png)
Therefore, when factored completely,
![2x^2-8=2(x+2)(x-2)](https://img.qammunity.org/2019/formulas/mathematics/college/7ui7h7ixvz5n3l1hy0gkrxty2p16kzmvl6.png)