228k views
2 votes
Locating Zeros of Polynomial Function:
Approximate the real zeros to the nearest tenth

Locating Zeros of Polynomial Function: Approximate the real zeros to the nearest tenth-example-1
User Tpol
by
5.9k points

1 Answer

2 votes

we are given


f(x)=2x^4-x^3+x-2

we can check each options

option-A:

-1,1

we can plug x=-1 and x=1 and check whethet f(x)=0

At x=-1:


f(-1)=2(-1)^4-(-1)^3+(-1)-2


f(-1)=0

At x=1:


f(1)=2(1)^4-(1)^3+(1)-2


f(1)=0

so, this is TRUE

option-B:

0,1

we can plug x=0 and x=1 and check whethet f(x)=0

At x=0:


f(0)=2(0)^4-(0)^3+(0)-2


f(0)=-2

At x=1:


f(1)=2(1)^4-(1)^3+(1)-2


f(1)=0

so, this is FALSE

option-C:

-2,-1

we can plug x=-2 and x=-1 and check whethet f(x)=0

At x=-2:


f(-2)=2(-2)^4-(-2)^3+(-2)-2


f(-2)=36

At x=-1:


f(-1)=2(-1)^4-(-1)^3+(-1)-2


f(-1)=0

so, this is FALSE

option-D:

-1,0

we can plug x=-1 and x=0 and check whethet f(x)=0

At x=-1:


f(-1)=2(-1)^4-(-1)^3+(-1)-2


f(-1)=0

At x=0:


f(0)=2(0)^4-(0)^3+(0)-2


f(0)=-2

so, this is FALSE



User Dragon Creature
by
6.1k points