29.0k views
5 votes
Solve the questions

Solve the questions-example-1
User Cnova
by
8.5k points

1 Answer

2 votes

Let's do the trig part first, then the calculus. First we simplify the integrand.


\cot^3 x \sin ^3 x=(\cos^3 x)/(\sin^3 x) \sin^3 x= \cos^3 x

The triple angle formula is:


\cos 3x = 4 \cos^3 x - 3 \cos x

or


\cos^3 x = \frac 1 4 (\cos 3x + 3 \cos x)

Now we can integrate:


\displaystyle \int \cot^3 x \sin^3 x \ dx = \int \cos^3 x\ dx= \int \tfrac 1 4 (\cos 3x + 3 \cos x)\ dx


=\frac 1 4 (\frac 1 3 \sin 3x + 3 \sin x) + C


=\frac 1 {12} \sin 3x + \frac 3 4 \sin x + C