162k views
2 votes
What is the domain and range of each relation?

{(−7, 2), (−2, 2), (0, 1), (4, 5)}

A mapping diagram. Element x contains negative 4, negative 3, negative 1, and 1. Element Y contains negative 3, negative 1, and 4. Negative four maps to negative 1. Negative three maps to negative 3 and 4. Negative one maps negative 1. One maps to 4.

A) Domain -1, 3, 4
     Range -4, -3. -1. 1

B)  Domain -7, -2, 0, 4
      Range 1, 2, 5

C)  Domain -4, -3, -1, 1
      Range -3, -1, 4

User Han Parlak
by
5.4k points

2 Answers

4 votes

{(−7, 2), (−2, 2), (0, 1), (4, 5)} = B

Element x contains negative 4, negative 3, negative 1, and 1. Element Y contains negative 3, negative 1, and 4. = C

i hope this helps, i got kinda confused :/

User Vvye
by
5.7k points
4 votes

Answer:

1) Domain -7, -2, 0, 4

Range 1, 2, 5

2) Domain -4, -3, -1, 1

Range -3, -1, 4

Explanation:

1) Given relation,

{(−7, 2), (−2, 2), (0, 1), (4, 5)}

That, has the input values, -7, -2, 0, 4,

And, has the output values 2, 1, 5

We know that the set of all possible input values of a relation is called the domain of the relation,

While the set of all possible output values is called the range of the relation,

Thus, the domain of the above relation would be,

{ -7, -2, 0, 4 }

And, the range of the function,

{ 1, 2, 5 }

2) In the second relation,

Negative four maps to negative 1. Negative three maps to negative 3 and 4. Negative one maps negative 1. One maps to 4.

Let g(x) be the relation,

⇒ g(x) = {(-4, -1), (-3, -3), (-3, 4), (-1,-1), (1,4)}

Input values are -4, -3, -1, 1,

Domain = { -4, -3, -1, 1 }

Also, output values are -1, -3, 4,

Range = { -3, -1, 4 }

User Tarwn
by
5.9k points