127k views
0 votes
What is the 24th term of the arithmetic sequence where a1 = 8 and a9 = 56?

1 Answer

5 votes

Answer:


a_(24)=146

Explanation:

The formula of a nth term of n arithmetic sequence:


a_n=a_1+(n-1)d

--------------------------------------


a_m=a_1+(m-1)d\\\\a_m-a_n=(a_1+(m-1)d)-(a_1+(n-1)d)\\\\=a_1+(m-1)d-a_1-(n-1)d=(m-1)d-(n-1)d=(m-1-n+1)d=(m-n)d

Therefore


a_9-a_1=(9-1)d=8d


8d=56-8\\8d=48\qquad|:8\\d=6

Substitute:


a_1=8,\ d=6,\ n=24\\\\a_(24)=8+(24-1)(6)=8+(23)(6)=8+138=146

User Dwo
by
6.3k points