To get the distance between
and
, we subtract
from
![6](https://img.qammunity.org/2019/formulas/mathematics/high-school/4f9gb0n8gtnl14jn4oj9l1cp09nmgthf9h.png)
That is,
![d=6-4(1)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2fahte4e8lojv3hnok8rjx9jjr3zcuta3j.png)
We change the mixed number to improper fraction now to get,
![d=6-(17)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ok4wkv73y1ffuujk3wawozri7m5tfl9rvh.png)
This is the same as,
![d=(6)/(1)-(17)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ps54lyjm8mrcivf8mh6joxmcc3yn4hmkez.png)
We collect LCM to be 4
![=(4*6-17)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7bxn9udyuh8qj4kbufezdgdhjisd5u3f9b.png)
This gives us,
![=(24-17)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hbo0wb9jnoxod51b2i0e7fu3rcrxt2s5lw.png)
![=(7)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cmb3plbhfnjkz7l3xpfq971jd6ysg8i2jt.png)
Convert back to mixed number to get,
![=1(3)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/x4lp69adqd7i4yt3luiixg2e2lyhg8dvst.png)
Therefore the distance between the two numbers is
![=1(3)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/x4lp69adqd7i4yt3luiixg2e2lyhg8dvst.png)
Note that the other way round will result in negative value. That is subtracting 6 from
will give
![-1(3)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/s826c7092vxp6gpweb1gkvwvklavysqbkb.png)
But since this is distance we find the absolute value and get the same result.
![d=|-1(3)/(4)|=1(3)/(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/yq3aey5gpaanjezuzkxb6zw77p1db3klbf.png)