88.9k views
2 votes
20 points! Thank you

20 points! Thank you-example-1

2 Answers

2 votes

How to get answer by Mimiwhatsup:


3x^3+6x^2-24x\\\mathrm{Factor\:out\:common\:term\:}3x:\quad 3x\left(x^2+2x-8\right)\\3x^3+6x^2-24x\\\mathrm{Apply\:exponent\:rule}:\quad \:a^(b+c)=a^ba^c\\x^2=xx\\x^3=x^2x\\=3x^2x+6xx-24x\\\mathrm{Rewrite\:}24\mathrm{\:as\:}3\cdot \:8\\\mathrm{Rewrite\:}6\mathrm{\:as\:}3\cdot \:2\\=3x^2x+3\cdot \:2xx-3\cdot \:8x\\\mathrm{Factor\:out\:common\:term\:}3x\\=3x\left(x^2+2x-8\right)\\\mathrm{Factor}\:x^2+2x-8:\quad \left(x-2\right)\left(x+4\right)\\x^2+2x-8\\Break\:the\:expression\:into\:groups\\


=\left(x^2-2x\right)+\left(4x-8\right)\\\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2-2x\mathrm{:\quad }x\left(x-2\right)\\\mathrm{Factor\:out\:}4\mathrm{\:from\:}4x-8\mathrm{:\quad }4\left(x-2\right)\\=x\left(x-2\right)+4\left(x-2\right)\\\mathrm{Factor\:out\:common\:term\:}\left(x-2\right)\\=\left(x-2\right)\left(x+4\right)\\Answer: =3x\left(x-2\right)\left(x+4\right)

A. Is the correct answer.

User David Mas
by
8.2k points
3 votes

<b>HEY THERE !!

Factorization of the trinomial
3x^3 +6x^2 -24x
will be :-

taking common 3x

=>3x(x^2+2x-12)......1️⃣

now the factorization of (x^2+2x-12) will be
(x-2)(x+4).......2️⃣

so your answer from 1️⃣and 2️⃣ is (A) 3x(x-2)(x+4).

Hope it helped you.
User Vincenzopalazzo
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories