We need to simplify the expression:
![12x^(-6)y^(10) * (3x^(7)y)](https://img.qammunity.org/2019/formulas/mathematics/college/sndtnlwn1mm1okixh3l2bclhtm7xcssahk.png)
Now, we know that we can resolve the exponents of the variables with the like terms only and we can multiply the coefficients independently:
Now,
![12x^(-6)y^(10) * 3x^(7)y=(12 * 3)* (x^(-6)* x^(7))* (y^(10)* y)](https://img.qammunity.org/2019/formulas/mathematics/college/towfxv0204qvb8v0l9e9672qrd5vdmsr4j.png)
On simplifying the above expression we get:
![36* x^((-6+7))* y^((10+1))](https://img.qammunity.org/2019/formulas/mathematics/college/gupu5mjlyk9tr8u3dtyrqh85z8zmn4dldb.png)
![=36 * x^(1)* y^(11)](https://img.qammunity.org/2019/formulas/mathematics/college/spt2p6fi376bzfryhvzs409o52nzdz5p47.png)
![=36 * x * y^(11)](https://img.qammunity.org/2019/formulas/mathematics/college/tz4s79huqgc6ivhs5k1a6z3p40gpm2rku6.png)
![=36xy^(11)](https://img.qammunity.org/2019/formulas/mathematics/college/4x81wjx1rw2z4gnun2xkyo1chpanbwqa0e.png)
So the simplified form of the expression
.