131k views
2 votes
Given: AO = OD
OB = OC
m∠1=74˚, m∠2=36˚
Find: m∠ACD

Given: AO = OD OB = OC m∠1=74˚, m∠2=36˚ Find: m∠ACD-example-1
User Johan G
by
8.3k points

2 Answers

1 vote

First of all m<1 + m<2 = m<ACD

Soo we just need to add them.

74 + 36 = 110

So m<ACD = 110 degrees.

GOOD LUCK! :)

User Archarius
by
7.9k points
6 votes

Answer:


m\angle ACD=110^(\circ)

Explanation:

Given information: AO = OD, OB = OC, m∠1=74˚, m∠2=36˚.

In triangle OAB and ODC,


AO=OD (Given)


m\angle AOB=m\angle DOC (Vertical angles)


OB=OC (Given)

By SAS postulate,


\triangle OAB\cong \triangle ODC


\angle OBA\cong \triangle OCD (CPCTC)


m\angle OBA=m\triangle OCD


74^(\circ)=m\triangle OCD

From the given figure it is clear that


\angle ACD=\angle ACO+\angle OCD


\angle ACD=36^(\circ)+74^(\circ)


\angle ACD=110^(\circ)

Therefore, the measure of angle ACD is 110°.

User Avivr
by
8.6k points

Related questions