90.1k views
5 votes
(K3+2k2-82k-28)/(k+10)

User Pekapa
by
7.9k points

1 Answer

4 votes

So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:

(Note that synthetic division can only be used when the divisor is a 1st degree binomial)

  • -10 | 1 + 2 - 82 - 28
  • ---------------------------

Now firstly, drop the 1:

  • -10 | 1 + 2 - 82 - 28
  • -------------------------
  • 1

Next, you are going to multiply -10 and 1, and then combine the product with 2.

  • -10 | 1 + 2 - 82 - 28
  • ↓ - 10
  • -------------------------
  • 1 - 8

Next, multiply -10 and -8, then combine the product with -82:

  • -10 | 1 + 2 - 82 - 28
  • ↓ -10 + 80
  • -------------------------
  • 1 - 8 - 2

Next, multiply -10 and -2, then combine the product with -28:

  • -10 | 1 + 2 - 82 - 28
  • ↓ -10 + 80 + 20
  • -------------------------
  • 1 - 8 - 2 - 8

Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).

Putting it together, the quotient is
k^2-8k-2-(8)/(k+10)

User John Corbett
by
7.8k points