Answer:
Option B: 25 inches, 60 inches and 65 inches is the correct answer.
Explanation:
We will use Pythagorean theorem to find out the dimensions that Adam should use.
A. 50 in, 110 in and 130 in
Using Pythagorean theorem;
![a^2+b^2=c^2 \\(50)^2 + (110)^2 = (130)^2\\2500 + 12100 = 16900\\14600\\eq 16900](https://img.qammunity.org/2022/formulas/mathematics/college/gj4pxhogwpr95lob0z3l03xu68y9ufbwmc.png)
These dimensions will not form a right triangle.
B. 25 in, 60 in, and 65 in
![(25)^2 + (60)^2=(65)^2\\625+3600= 4225\\4225=4225](https://img.qammunity.org/2022/formulas/mathematics/college/dqcanqqbiieqcw4bqkj60ayu98yrt6f6qw.png)
These dimensions of the frame will form a right triangle.
C. 40 in., 44 in., 58 in.
![(40)^2+(44)^2=(58)^2\\1600+1936=3364\\3536\\eq 3364](https://img.qammunity.org/2022/formulas/mathematics/college/pnh65cs8efmr441psai05n244ws96tg6fk.png)
These dimensions will not form a right angled triangle.
D. 130 in., 50 in, 60 in
The larger dimension represents the hypotenuse in right angled triangle.
![(50)^2+(60)^2=(130)^2\\2500+3600=16900\\6100\\eq 16900](https://img.qammunity.org/2022/formulas/mathematics/college/5t9782i3h9rybft949riytyrfnydjubx12.png)
These dimensions will not form a right angled triangle.
Hence,
Option B: 25 inches, 60 inches and 65 inches is the correct answer.