You have to use the laws of exponents and your knowledge of multiplication by 10.
So we have
![\frac{3.6 * {10}^(8) }{1.2 * {10}^(3) }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cc1dktihbb4qfc12eexmt95v5x6pd03dk8.png)
We can rewrite like this
![\frac{3.6 * {10}^(8) }{1.2 * {10}^(3) } = \frac{3.6 * 10 * {10}^(7) }{1.2 * 10 * {10}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/g1138s11dpmrp32p14d1xqj3z4ef94vcet.png)
So multiplying by the 10 will get read of the decimal
![\frac{3.6 * {10}^(8) }{1.2 * {10}^(3) } = \frac{36 * {10}^(7) }{12 * {10}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/middle-school/bdoyxmok5oqehbv8sb85dfjp7r3s2l35s5.png)
Now divide the 36 by 12 , write one base of 10 subtract and the exponent of 2 from 7
![\frac{3.6 * {10}^(8) }{1.2 * {10}^(3) } = 3 * {10}^(7 - 2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/h1ntxtz7sfx0xyp9m6dnkgto2m7ml7witk.png)
![\frac{3.6 * {10}^(8) }{1.2 * {10}^(3) } = 3 * {10}^(5)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/lrbbvjkjzhd9xgbg8w8o3rmtx8r29dbu84.png)