112k views
0 votes
In a right triangle ABC, CD is an altitude, such that AD=BC. Find AC, if AB=3 cm, and CD=√2 cm.

2 Answers

3 votes

In Δ ADC,


AD^(2) + CD^(2) = AC^(2)


AD^(2)+2= AC^(2)


AD^(2)=AC^(2) -2 (1)

In Δ ABC,


AC^(2) + BC^(2) = AB^(2)


AC^(2) + AD^(2) = AB^(2) (Given BC = AD)


AC^(2) + AC^(2)-2 = 9 from (1) and given that AB = 3 cm


2AC^(2) -2=9


2AC^(2) =11


AC^(2) =(11)/(2)


AC=\sqrt{(11)/(2) } cm



In a right triangle ABC, CD is an altitude, such that AD=BC. Find AC, if AB=3 cm, and-example-1
User Bijay Regmi
by
5.1k points
4 votes

Given that triangle ABC is right angle triangle. CD is altitude such that AD=BC

ABC is a right angle triangle so apply Pythogorean theorem


AC^(2) + BC^(2) = AB^(2)


AC^(2) + AD^(2) = AB^(2) (Given that AD = BC)


AC^(2) + AD^(2) = 3^(2) (Given that AB=3)


AC^(2) + AD^(2) = 9 ...(i)

ADC is a right angle triangle so apply Pythogorean theorem


AD^(2) + CD^(2) = AC^(2)


AD^(2)+(√(2))^2= AC^(2)


AD^(2)+2= AC^(2)


AD^(2)=AC^(2) -2 ...(ii)


Plug value (ii) into (i)


AC^(2) + AC^(2)-2 = 9


2AC^(2) -2=9


2AC^(2) =11


AC^(2) =(11)/(2)


AC=\sqrt{(11)/(2) }


Hence final answer is
AC=\sqrt{(11)/(2) }

User Robert Larsen
by
5.9k points