Correct answer is: distance from D to AB is 6cm
Solution:-
Let us assume E is the altitude drawn from D to AB.
Given that m∠ACB=120° and ABC is isosceles which means
m∠ABC=m∠BAC =
![(180-120)/(2)=30](https://img.qammunity.org/2019/formulas/mathematics/high-school/mglekdwod2csv58dq9md8g6yt2yiz9cop8.png)
And AC= BC
Let AC=BC=x
Then from ΔACD , cos(∠ACD) =
![(DC)/(AC) =(4)/(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lnz79opc726cftd90mu613e5uxe2iic8ey.png)
Since DCB is a straight line m∠ACD+m∠ACB =180
m∠ACD = 180-m∠ACB = 60
Hence
![cos(60)=(4)/(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tjspzvzc74owsgzdsdifulu561a916fq15.png)
![x=(4)/(cos60)= 8](https://img.qammunity.org/2019/formulas/mathematics/high-school/y0djanp0626vqyy11dofstryoxywrwxjn2.png)
Now let us consider ΔBDE, sin(∠DBE) =
![(DE)/(DB) =(DE)/(DA+AB) = (DE)/(4+8)](https://img.qammunity.org/2019/formulas/mathematics/high-school/aytyh52iepacsvdir0srt5ifcf0wma71hb.png)
![DE = 12sin(30) = 6cm](https://img.qammunity.org/2019/formulas/mathematics/high-school/h9c0g0b9zyemwn0e5ow3nd4udnoqbf3hhj.png)