190k views
5 votes
18. Determine the common difference, the fifth term, and the sum of the first 100 terms of the following sequence:

1,2.5,4,5.5

User Kay Tsar
by
8.2k points

1 Answer

2 votes


a_1=1,\ a_2=2.5,\ a_3=4,\ a_4=5.5,\ ...\\\\a_2-a_1=2.5-1=1.5\\a_3-a_2=4-2.5=1.5\\a_4-a_3=5.5-4=1.5\\a_(n+1)-a_n=1.5=constans\\\\\text{It's an arithmetic sequence with}\\a_1=1,\ \boxed{d=1.5}\\\\a_n=a_1+(n-1)d\to a_n=1+(n-1)(1.5)=1+1.5n-1.5\\\\a_n=1.5n-0.5\\\\a_5=1.5(5)-0.5=7.5-0.5=7\\\boxed{a_5=7}\\\\\text{The formula of a Sum of the First n Terms of an Arithmetric Sequence:}\\\\S_n=(2a_1+(n-1)d)/(2)\cdot n\\\\\text{We have:}\\a_1=1,\ d=1.5,\ n=100\\\\\text{Substitute}


S_(100)=((2)(1)+(100-1)(1.5))/(2)\cdot100=(2+(99)(1.5))/(1)\cdot50\\\\=(2+148.5)\cdot50=150.5\cdot50=7,525\\\\\boxed{S_(100)=7,525}\\\\Answer:\\the\ common\ difference:\ d=1.5\\the\ fifth\ term:\ a_5=7\\the\ sum\ of\ first\ 100\ terms:\ S_(100)=7,525

User Jpprade
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories