Answer: The answer to the given expression is
![(1)/(x^(11))](https://img.qammunity.org/2019/formulas/mathematics/high-school/32g12j2o4g4rrewghq9gjo84dj68wy76l5.png)
Explanation:
We are given an expression:
![(x^(-4))/(x^7)](https://img.qammunity.org/2019/formulas/mathematics/high-school/kkd1txrjwiknmt4dqgsvzoz5pjlvh8d2uq.png)
To simplify this, we use the laws of exponents:
![(x^m)/(x^n)=x^(m-n)](https://img.qammunity.org/2019/formulas/mathematics/college/7y5inbueb3oxaha3hp9v4l8blu2mj9bu1k.png)
![x^(-m)=(1)/(x^m)](https://img.qammunity.org/2019/formulas/mathematics/college/y9ho0h1luna2xocc2pdk7i172vf0bovz8y.png)
Simplifying the expression using law 1, we get:
![\Rightarrow (x^(-4))/(x^7)=x^(-4-7)=x^(-11)](https://img.qammunity.org/2019/formulas/mathematics/high-school/nvrmdtcsqe3pfsuqrx0a4r7162qj4kjxns.png)
Now, using law 2, we get:
![\Rightarrow x^(-11)=(1)/(x^(11))](https://img.qammunity.org/2019/formulas/mathematics/high-school/uz68qdqj2pd8i4h98c5g19yaaf1lose4hk.png)
Hence, the answer to the given expression is
![(1)/(x^(11))](https://img.qammunity.org/2019/formulas/mathematics/high-school/32g12j2o4g4rrewghq9gjo84dj68wy76l5.png)