Answer:
5 is the value for x.
Explanation:
By Pythagorean Theorem we have:
![(√(61))^2=(x)^2+(x+1)^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o03q5v1xzo3f03ep2f4b9h7nvplo2lfv5r.png)
![61=x^2+(x+1)^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/efpf36noe5pkxpn4iej9wuv3q1ubozazse.png)
Expand the binomial square using
:
![61=x^2+x^2+2x+1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jb7310zo7zlnxvkwwx530bs37orcia3mqt.png)
Combine like terms:
![61=2x^2+2x+1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jrkz3efr6ieeph0z422151tw1xv8j6q7ij.png)
Subtract 61 on both sides:
![2x^2+2x-60=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/48r61oxpujq0y4yp31n16ww6egya313sss.png)
Divide both sides by 2:
![x^2+x-30=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/bni4kros0i57akgekr82f9bimyy6xi9hhw.png)
Find two numbers that multiply to be -30 and add to be 1.
Those numbers are 6 and -5 so the factored form is:
![(x+6)(x-5)=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/u2w9e5t0ocgly5m5cfqix9sqigj8qze7c4.png)
This implies:
or
![x-5=0](https://img.qammunity.org/2019/formulas/mathematics/college/5oopp5eo15sdjh77hknvou5p8gn83y24i1.png)
Solving the first equation by subtracting 6 on both sides gives:
![x=-6](https://img.qammunity.org/2019/formulas/mathematics/college/9vfi9ksk9lpxbfi6umxlzs1r7thsm5ho5m.png)
Solving the second equation by adding 5 on both sides gives:
![x=5](https://img.qammunity.org/2019/formulas/mathematics/college/m3atvlkke09t7u8nz2kzldrh2p4btreb3b.png)
So since a side measurement can bot be negative units long, the only answer that x can be is 5.
Let's check:
![5^2+(5+1)^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/trd25zovufb214aakkcpkez0bybu1vjqxu.png)
![5^2+(6)^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uz3nmt6kr4z8kmssvn0jp9qbahhmurraoy.png)
![25+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rm7d9b7wxfgfeqgzn4hpsu2qijwna754iw.png)
![61](https://img.qammunity.org/2019/formulas/mathematics/middle-school/bqu3hgpipqe1xflg8e68tz8h5q566b5sbo.png)
![(√(61))^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/20q682uqkqspba2ro5x4l7pina0jstsp3c.png)