The equation of a circle:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/q90ku3ccsgo5tn2ecolnms0hyi8gsih2jc.png)
(h, k) - center
r - radius
We have the points A(-1, 7) and B(7, 7). AB is a diameter of a circle.
The midpoint of diameter is a center of a circle.
Calculate this using:
![M\left((x_1+x_2)/(2),\ (y_1+y_2)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/plb63bclrgiikylmyus54fx51i3ecpz6v9.png)
Substitute
![M\left((-1+7)/(2),\ (7+7)/(2)\right)\to M(3,\ 7)](https://img.qammunity.org/2019/formulas/mathematics/high-school/yj6id4s7fi3wga3re2i50ux88lx4xgmhum.png)
Therefore we have h = 3 and k = 7.
Calculate a length of a radius using:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3fktmglj8sv0ehs8qd9rm7v2895ga3sa4x.png)
Substitute coordinates of the points (3, 7) and (7, 7):
![r=√((7-3)^2+(7-7)^2)=√(4^2)=4](https://img.qammunity.org/2019/formulas/mathematics/high-school/z6kljczccyy3adojho63jbc0roa0uwdwec.png)
Your answer is:
![(x-3)^2+(y-7)^2=4^2\\\\\boxed{(x-3)^2+(y-7)^2=16}](https://img.qammunity.org/2019/formulas/mathematics/high-school/grxsfl6i0y488zuz8mdqjhl8uqgam32tyw.png)
------------------------------------------------------------------------------------------
You can read the coordinates of the center and length of a radius from a graph.
Look at the picture.