Answer:
![f^(-1)(x)=(x-12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/72992g2azuwjm1x1ey74j98boyd1ju609w.png)
Explanation:
Given:
![f(x)=5x+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/f7nt8aipky1ppmrexskwqomru2pemqnizq.png)
Replace f(x) with y:
![y=5x+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/av3b05eizpj436ae582dcal1fpw25lchkz.png)
Switch variables and solve for y:
![x=5y+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/db7uzmkc1prwe5wavv9yormpftcavpxnjv.png)
![x-12=5y](https://img.qammunity.org/2023/formulas/mathematics/high-school/oke23mytendwjht904pbiywn71yiljpytr.png)
![(x-12)/(5)=y](https://img.qammunity.org/2023/formulas/mathematics/high-school/6n67brkvagga3y2ym3nn54jpvppgp57u9o.png)
Simplify:
![(1)/(5)x-(12)/(5)=y](https://img.qammunity.org/2023/formulas/mathematics/high-school/q9axze69vbl5onvkyl5udnuw4a3gx73n8q.png)
Replace y with f^-1(x):
![f^(-1)(x)=(1)/(5)x-(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/boffyhv01bx7dpmb8grg4il51jwwha68zd.png)
Therefore, the inverse function for
is
.
Notice how in the graph attached of the inverse functions that they are symmetric about the line y=x. This is a crucial characteristic of inverse functions.